

Optimal bounds for geometric dilation and computer-assisted proofs Discrete Mathematics Seminar - ULiège

Damien Galant

CERAMATHS/DMaths Département de Mathématique

Université Polytechnique Université de Mons

Hauts-de-France F.R.S.-FNRS Research Fellow

Joint work with Cédric Pilatte (UMONS, Oxford) and Christophe Troestler (UMONS)

Wednesday 3 May 2023

1 [Geometric dilation of point sets](#page-1-0)

2 [Degree-3 dilation of](#page-10-0) \mathbb{Z}^2

3 dil₃(\mathbb{Z}^2 [\): dilation boost](#page-39-0)

Triangulations

Let $S \subset \mathbb{R}^2$ be a set of points (finite for now).

Definition

A **planar network** on S is a set of line segments with endpoints in S, where no two segments intersect nontrivially (except at endpoints).

Triangulations

Let $S \subset \mathbb{R}^2$ be a set of points (finite for now).

Definition

A **planar network** on S is a set of line segments with endpoints in S, where no two segments intersect nontrivially (except at endpoints).

Triangulations

Let $S \subset \mathbb{R}^2$ be a set of points (finite for now).

Definition

A **planar network** on S is a set of line segments with endpoints in S, where no two segments intersect nontrivially (except at endpoints).

Definition

A **triangulation** of S is a planar network which is maximal for inclusion.

Let T be a triangulation of S. For $p, q \in S$, write $d_{\mathcal{T}}(p, q)$ for the Euclidean shortest path distance between p and q .

Let T be a triangulation of S. For $p, q \in S$, write $d_{\mathcal{T}}(p, q)$ for the Euclidean shortest path distance between p and q .

Diameter:

$$
\operatorname{diam}(T) := \max_{p,q \in S} d_T(p,q)
$$

Let T be a triangulation of S. For $p, q \in S$, write $d_{\mathcal{T}}(p, q)$ for the Euclidean shortest path distance between p and q .

Diameter:

$$
\operatorname{diam}(T):=\max_{p,q\in S}d_T(p,q)
$$

$$
\boxed{\text{dil}(\mathcal{T}) := \max_{p,q \in \mathcal{S}} \frac{d_{\mathcal{T}}(p,q)}{|pq|} \in [1,+\infty)}
$$

Let T be a triangulation of S. For $p, q \in S$, write $d_{\mathcal{T}}(p, q)$ for the Euclidean shortest path distance between p and q .

Diameter:

$$
\operatorname{diam}(T):=\max_{p,q\in S}d_T(p,q)
$$

Dilation:

$$
\boxed{\text{dil}(\mathcal{T}) := \max_{p,q \in \mathcal{S}} \frac{d_{\mathcal{T}}(p,q)}{|pq|}} \in [1,+\infty)
$$

Goal

Find a triangulation T such that $di(f)$ is minimal:

$$
\mathrm{dil}(S) := \min_{\mathcal{T} \text{ triangulation of } S} \mathrm{dil}(\mathcal{T})
$$

[Geometric dilation of point sets](#page-1-0) [Degree-3 dilation of](#page-10-0) \mathbb{Z}^2

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

Examples

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

2 [Degree-3 dilation of](#page-10-0) \mathbb{Z}^2

 3 $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

Degree-k dilation

Can we simultaneously require planarity and small maximum degree?

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

Degree-k dilation

Can we simultaneously require planarity and small maximum degree?

Definition

$$
\mathrm{dil}_k(S) := \inf_{\substack{\mathcal{T} \text{ triangulation of } S, \\ \text{all vertices of } \mathcal{T} \text{ have maximal degree } k}} \mathrm{dil}(\mathcal{T}).
$$

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

Degree-k dilation

Can we simultaneously require planarity and small maximum degree?

Definition

$$
\mathrm{dil}_k(S) := \inf_{\substack{\mathcal{T} \text{ triangulation of } S, \\ \text{all vertices of } \mathcal{T} \text{ have maximal degree } k}} \mathrm{dil}(\mathcal{T}).
$$

if S is finite, one can iterate over triangulations.

Degree-k dilation

Can we simultaneously require planarity and small maximum degree?

Definition

$$
\mathrm{dil}_k(S) := \inf_{\substack{\mathcal{T} \text{ triangulation of } S, \\ \text{all vertices of } \mathcal{T} \text{ have maximal degree } k}} \mathrm{dil}(\mathcal{T}).
$$

if S is finite, one can iterate over triangulations. **what about infinite point sets** S**?**

[Geometric dilation of point sets](#page-1-0) **[Degree-3 dilation of](#page-10-0)** \mathbb{Z}^2

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

The square lattice: $S = \mathbb{Z}^2$

Previously known results about $\mathrm{dil}_k(\mathbb{Z}^2)$, $k \geq 4$

Dumitrescu and Ghosh showed in [\[DG16a\]](#page-73-0) that

$$
\mathrm{dil}_k(\mathbb{Z}^2) = \sqrt{2}
$$

for all $k \geq 4$.

Previously known results about $\mathrm{dil}_k(\mathbb{Z}^2)$, $k \geq 4$

Dumitrescu and Ghosh showed in [\[DG16a\]](#page-73-0) that

$$
\mathrm{dil}_k(\mathbb{Z}^2) = \sqrt{2}
$$

for all $k > 4$.

The inequality

$$
\mathrm{dil}_k(\mathbb{Z}^2) \geq \sqrt{2}
$$

follows since \mathbb{Z}^2 contains squares and is valid for $k=3$ as well.

Previously known results about $\mathrm{dil}_k(\mathbb{Z}^2)$, $k \geq 4$

Dumitrescu and Ghosh showed in [\[DG16a\]](#page-73-0) that

$$
\mathrm{dil}_k(\mathbb{Z}^2) = \sqrt{2}
$$

for all $k > 4$.

The inequality

$$
\mathrm{dil}_k(\mathbb{Z}^2) \geq \sqrt{2}
$$

follows since \mathbb{Z}^2 contains squares and is valid for $k=3$ as well. **The inequality** √

$$
\mathrm{dil}_k(\mathbb{Z}^2) \leq \sqrt{2}
$$

requires to show the existence of triangulations with low dilation and degree $\leq k$, as was done in [\[DG16a\]](#page-73-0).

What about $k = 2$ and $k = 3$?

The case $k = 2$ **is not interesting since in this case we could only join** points of \mathbb{Z}^2 with a path, leading to an infinite dilation.

What about $k = 2$ and $k = 3$?

- The case $k = 2$ is not interesting since in this case we could only join points of \mathbb{Z}^2 with a path, leading to an infinite dilation.
- One can show that

$$
\mathrm{dil}_3(\mathbb{Z}^2) \geq 1 + \sqrt{2}:
$$

What about $k = 2$ and $k = 3$?

- **The case** $k = 2$ **is not interesting since in this case we could only join** points of \mathbb{Z}^2 with a path, leading to an infinite dilation.
- One can show that

$$
\mathrm{dil}_3(\mathbb{Z}^2) \geq 1 + \sqrt{2}:
$$

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

 $\mathrm{dil}_3(\mathbb{Z}^2)$

■ We just saw that

 $2.414 \leq 1+$ √ $\overline{2} \le \mathrm{dil}_3(\mathbb{Z}^2)$

 $\mathrm{dil}_3(\mathbb{Z}^2)$

We just saw that \blacksquare

$$
2.414 \leq 1+\sqrt{2} \leq \mathrm{dil}_3(\mathbb{Z}^2)
$$

In In [\[DG16a\]](#page-73-0), Dumitrescu and Ghosh showed that

$$
{\rm dil}_3(\mathbb{Z}^2) \leq (3+2\sqrt{2})/\sqrt{5} \leq 2.607
$$

using an explicit construction, and conjectured this bound to be tight.

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

 $\mathrm{dil}_3(\mathbb{Z}^2)$

■ We just saw that

$$
2.414 \leq 1+\sqrt{2} \leq \mathrm{dil}_3(\mathbb{Z}^2)
$$

In In [\[DG16a\]](#page-73-0), Dumitrescu and Ghosh showed that

$$
{\rm dil}_3(\mathbb{Z}^2) \leq (3+2\sqrt{2})/\sqrt{5} \leq 2.607
$$

using an explicit construction, and conjectured this bound to be tight.

With C. Pilatte, we *disproved* this conjecture by giving examples of degree-3 triangulations of \mathbb{Z}^2 with dilation $1+\sqrt{2}.$

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

A periodic degree-3 triangulation of \mathbb{Z}^2 with dilation $1 + \sqrt{2}$

Another example with dilation $1\,+\,$ √ 2

[Geometric dilation of point sets](#page-1-0) **[Degree-3 dilation of](#page-10-0)** \mathbb{Z}^2

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

Yet another example

Main ideas:

Only look for periodic examples, and iterate over the coordinates of two small vectors forming the fundamental cell of the tiling (the blue vectors in the pictures);

Main ideas:

- **Only look for periodic examples, and iterate over the coordinates of** two small vectors forming the fundamental cell of the tiling (the blue vectors in the pictures);
- **Edges** ≡ **obstructions to go from one side to the other;**

Main ideas:

Only look for periodic examples, and iterate over the coordinates of two small vectors forming the fundamental cell of the tiling (the blue vectors in the pictures);

Edges ≡ **obstructions to go from one side to the other;**

Adding exhaustively "small tiles", while respecting the degree 3 constraint, and try to detect pairs of points with high dilation as soon as possible (those with too many obstructions in between).

Main ideas:

Only look for periodic examples, and iterate over the coordinates of two small vectors forming the fundamental cell of the tiling (the blue vectors in the pictures);

Edges ≡ **obstructions to go from one side to the other;**

- Adding exhaustively "small tiles", while respecting the degree 3 constraint, and try to detect pairs of points with high dilation as soon as possible (those with too many obstructions in between).
- **The configurations are periodic, so we work on suitable "tori" with** few points.

Optimal and locally optimal triangulations

Definition

Let M be the set of *optimal* triangulations, the triangulations on \mathbb{Z}^2 of maximum degree 3 which have dilation $1+\surd 2$, i.e. so that

$$
d_{\mathcal{T}}(p,q) \leq (1+\sqrt{2})|pq|
$$

for every pair of vertices $(p, q) \in \mathbb{Z}^2$.

Optimal and locally optimal triangulations

Definition

Let M be the set of *optimal* triangulations, the triangulations on \mathbb{Z}^2 of maximum degree 3 which have dilation $1+\surd 2$, i.e. so that

$$
d_{\mathcal{T}}(p,q) \leq (1+\sqrt{2})|pq|
$$

for every pair of vertices $(p, q) \in \mathbb{Z}^2$.

Definition

Let \mathcal{M}_{loc} be the set of *locally optimal* triangulations, the triangulations T on \mathbb{Z}^2 of maximum degree 3 which satisfy the dilation constraint

$$
d_{\mathcal{T}}(p,q) \leq (1+\sqrt{2})|pq|
$$

for every pair of vertices $(p,q) \in \mathbb{Z}^2$ with $|pq| \leq \sqrt{5}.$

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

Small zones considered in the definition of \mathcal{M}_{loc}

Given $p \in \mathbb{Z}^2$, the blue dots represent the points $q \in \mathbb{Z}^2$ with $|pq| \leq \sqrt{5}$.

1 [1](#page-26-0) 1 [1](#page-40-0) 1 1

de la construcción de la construcc

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

Uncountably many locally optimal triangulations

1 1 1 1 1 1 1 1 1

A structural result

Theorem ("Local-global principle"; G.-Pilatte 2022)

 $\mathcal{M}_{\text{loc}} = \mathcal{M}.$

A structural result

Theorem ("Local-global principle"; G.-Pilatte 2022)

 $\mathcal{M}_{\text{loc}} = \mathcal{M}.$

Lemma ("Dilation boost")

Let $T \in \mathcal{M}_{\mathrm{loc}}$. If $p, q \in \mathbb{Z}^2$ are such that $|pq| = 1$ √ 5, then

$$
\frac{d_{\mathcal{T}}(p,q)}{|pq|} \le \frac{3+\sqrt{2}}{\sqrt{5}} \approx 1.974 < 2.414 \approx 1 + \sqrt{2}.
$$

 $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$ $\mathrm{dil}_3(\mathbb{Z}^2)$: dilation boost

A structural result

Theorem ("Local-global principle"; G.-Pilatte 2022)

 $\mathcal{M}_{\text{loc}} = \mathcal{M}.$

Lemma ("Dilation boost")

Let $T \in \mathcal{M}_{\mathrm{loc}}$. If $p, q \in \mathbb{Z}^2$ are such that $|pq| = 1$ √ 5, then

$$
\frac{d_{\mathcal{T}}(p,q)}{|pq|} \le \frac{3+\sqrt{2}}{\sqrt{5}} \approx 1.974 < 2.414 \approx 1 + \sqrt{2}.
$$

Idea of the proof ot the Local-global principle.

If $p, q \in \mathbb{Z}^2$ are such that $|pq| >$ √ 5, go from p to q using many "knight moves". Then $d_{\mathcal{T}}(p,q)$ is small enough assuming the dilation boost.

2 [Degree-3 dilation of](#page-10-0) \mathbb{Z}^2

3 dil₃(\mathbb{Z}^2 [\): dilation boost](#page-39-0)

Some properties of triangulations in \mathcal{M}_{loc}

Lemma

The edges of every $T \in \mathcal{M}_{loc}$ are of length 1 or $\sqrt{2}$.

Proof.

Forbidden subconfigurations for triangulations of \mathcal{M}_{loc}

The previous lemma says that some "edge patterns", namely edges of The previous lemma says that some ledge patterns, maine
length greater than $\sqrt{2}$, cannot appear in a locally optimal triangulation.

Forbidden subconfigurations for triangulations of \mathcal{M}_{loc}

- The previous lemma says that some "edge patterns", namely edges of The previous lemma says that some ledge patterns, maine
length greater than $\sqrt{2}$, cannot appear in a locally optimal triangulation.
- Such forbidden subconfigurations will turn out to be crucial in the computer-assisted proof of the dilation boost.

Two forbidden subconfigurations

emma

Let $T \in \mathcal{M}_{loc}$ and let H_1, H_2 be the following edge configurations. Then, neither H₁ nor H₂ (nor any translation, rotation or reflection of one of these two configurations) is a subgraph of T.

Proof.

Computer-assisted.

Damien Galant [Geometric dilation and computer-assisted proofs](#page-0-0) Wednesday 3 May 2023 23

Computer-assisted proof for the forbidden configurations

The forbidden configurations cause too much obstruction to go from $\sqrt{\pi}$ one side to the other with dilation at most $1+\surd 2;$

Computer-assisted proof for the forbidden configurations

- The forbidden configurations cause too much obstruction to go from $\sqrt{\pi}$ one side to the other with dilation at most $1+\surd 2;$
- **This is not straightforward: a lengthy (luckily, computer-assisted!)** exhaustive search needs to be performed to show that these configurations do not extend to any triangulation in \mathcal{M}_{loc} ;

Computer-assisted proof for the forbidden configurations

- The forbidden configurations cause too much obstruction to go from $\sqrt{\pi}$ one side to the other with dilation at most $1+\surd 2;$
- **This is not straightforward: a lengthy (luckily, computer-assisted!)** exhaustive search needs to be performed to show that these configurations do not extend to any triangulation in \mathcal{M}_{loc} ;
- Without care, such an exhaustive search *does not terminate!* The tricky part is to choose well where to iterate over all possibilities to add an edge and to detect contradictions as soon as possible;

We fix two nodes u and v with $|u v| =$ √ 5. The dilation boost says exactly that none of the following four paths can be a shortest path between μ and v in a triangulation from \mathcal{M}_{loc} .

■ We do an exhaustive search, but trying to detect contradictions as soon as possible, for instance shortcuts (when there is a too short path between *u* and *v*) or *contradictions* (when two points cannot be joined so that their dilation is $\leq 1+\surd 2).$

- We do an exhaustive search, but trying to detect contradictions as soon as possible, for instance shortcuts (when there is a too short path between *u* and *v*) or *contradictions* (when two points cannot be joined so that their dilation is $\leq 1+\surd 2).$
- **The lemmas with the forbidden configurations are crucial: indeed,** they "factorize" several impossible configurations that require quite a lot of computational work.

- We do an exhaustive search, but trying to detect contradictions as soon as possible, for instance shortcuts (when there is a too short path between *u* and *v*) or *contradictions* (when two points cannot be joined so that their dilation is $\leq 1+\surd 2).$
- **The lemmas with the forbidden configurations are crucial: indeed,** they "factorize" several impossible configurations that require quite a lot of computational work.
- **T** Trying exhaustively to add edges in the right order is extremely important: not for correctness but for efficiency. If we do not go through the configuration in a "clever order", the search **never terminates**!

Thanks for your attention!

4 [Dilation of a curve, the square](#page-56-0)

Dilation of regular polygons

Dilation of regular polygons

Theorem (2019; Pilatte)

The sequence of dilations of regular polygons converges to a value,

Dilation of regular polygons

Theorem (2019; Pilatte)

The sequence of dilations of regular polygons converges to a value, **the dilation of the circle.**

Dilation of the circle

■ For each $n > 3$, we consider the dilation of the finite point set S_n whose vertices form a regular *n*-gon. We therefore consider a sequence of combinatorial optimization problems;

Dilation of the circle

- For each $n > 3$, we consider the dilation of the finite point set S_n whose vertices form a regular *n*-gon. We therefore consider a sequence of combinatorial optimization problems;
- \blacksquare There exists a *limit continuous optimization problem*, and there exists at least one optimal infinite triangulation (in a suitable precise sense) attaining the dilation of the circle;

Dilation of the circle

- For each $n > 3$, we consider the dilation of the finite point set S_n whose vertices form a regular *n*-gon. We therefore consider a sequence of combinatorial optimization problems;
- \blacksquare There exists a *limit continuous optimization problem*, and there exists at least one optimal infinite triangulation (in a suitable precise sense) attaining the dilation of the circle;
- **Neither the dilation nor the optimal triangulation for the circle are known!**

Conjectured optimal triangulations for the square

Conjectured optimal triangulations for the square

How to prove that those triangulations are optimal?

One can only consider triangulations containing a "central quadrilateral with a diagonal":

A pair of pairs

Two types of paths face a lot of obstruction: top-left to bottom-right and top-right to bottom-left:

Two paths for each pair

Two paths for each pair

A "continuous" computer-assisted proof (work in progress)

■ We need to show that the unique minimum of

 $[-1,1]^4 \rightarrow \mathbb{R}: (a,b,c,d) \mapsto \max_{p_1,p_2,q_1,q_2} \mathsf{max}(\mathrm{dil}(p_1,q_1),\mathrm{dil}(p_2,q_2))$

is attained for $(a, b, c, d) = 0_{\mathbb{R}^4}$;

A "continuous" computer-assisted proof (work in progress)

■ We need to show that the unique minimum of

 $[-1,1]^4 \rightarrow \mathbb{R}: (a,b,c,d) \mapsto \max_{p_1,p_2,q_1,q_2} \mathsf{max}(\mathrm{dil}(p_1,q_1),\mathrm{dil}(p_2,q_2))$

is attained for $(a, b, c, d) = 0_{\mathbb{R}^4}$;

This (explicit!) optimization problem is hard: lack of smoothness due to the min/max, lack of convexity, etc;

A "continuous" computer-assisted proof (work in progress)

■ We need to show that the unique minimum of

 $[-1,1]^4 \rightarrow \mathbb{R}: (a,b,c,d) \mapsto \max_{p_1,p_2,q_1,q_2} \mathsf{max}(\mathrm{dil}(p_1,q_1),\mathrm{dil}(p_2,q_2))$

is attained for $(a, b, c, d) = 0_{\mathbb{R}^4}$;

- **This (explicit!) optimization problem is hard: lack of smoothness due** to the min/max, lack of convexity, etc;
- With some care, one can show, **using interval arithmetic**, that the minimum must be *close* to $0_{\mathbb{R}^4}$;
A "continuous" computer-assisted proof (work in progress)

■ We need to show that the unique minimum of

 $[-1,1]^4 \rightarrow \mathbb{R}$: $(a, b, c, d) \mapsto \max_{p_1, p_2, q_1, q_2} \max(\mathrm{dil}(p_1, q_1), \mathrm{dil}(p_2, q_2))$

is attained for $(a, b, c, d) = 0_{\mathbb{R}^4}$;

- This (explicit!) optimization problem is hard: lack of smoothness due to the min/max, lack of convexity, etc;
- With some care, one can show, **using interval arithmetic**, that the minimum must be *close* to $0_{\mathbb{R}^4}$;
- A local analysis for (a, b, c, d) close $0_{\mathbb{R}^4}$ requires both theoretical and numerical ideas.

Bibliography

- [DG16a] A. Dumitrescu and A. Ghosh, Lattice spanners of low degree, Discrete Mathematics, Algorithms and Applications **8** (2016), no. 3.
- [DG16b] _______, Lower bounds on the dilation of plane spanners, Internat. J. Comput. Geom. Appl. **26** (2016), no. 2, 89–110, DOI 10.1142/S0218195916500059.
	- [GP22] D. Galant and C. Pilatte, A note on optimal degree-three spanners of the square lattice, Discrete Mathematics, Algorithms and Applications **14** (2022), no. 3.
	- [GPT] D. Galant, C. Pilatte, and C. Troestler, Computational aspects of planar dilation, In preparation.
		- [GP] D. Galant and C. Pilatte, The Minimum Dilation Triangulation Problem.
- [Mul04] W. Mulzer, Minimum dilation triangulations for the regular n-gon (Master's Thesis), 74p. (2004).
	- [Pil] C. Pilatte, *Dilation of limit triangulations*, In preparation (35p.)
	- [SI19] S. Sattari and M. Izadi, An improved upper bound on dilation of regular polygons, Comput. Geom. **80** (2019), 53–68, DOI 10.1016/j.comgeo.2019.01.009.